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Abstract

This paper presents a generd data processing language for spatio-temporal datacaled
multidimensional map algebra (MMA). Like conventiond map agebra, MMA
consgts of a set of locd, foca, zond, and globa data manipulation functions that can
be combined to form complex models. MMA functions, however, operate not only on
data that are two-dimensiond in space but dso on data that are: 1) one-dimengond in
time 2) both two-dimensond in space and one-dmensond in time 3) three-
dimensiona in space, and 4) both three-dimensiond in space and one-dimensond in
time. Asa proof of concept, these functions are implemented in JAVA as an open
source class library. Each function isimplemented as a JAVA dass, and is overloaded
to dlow for vaious combindtions of data layers, as wel as for function
parameterization.

1. Introduction

Despite significant research on spatio-tempora data models (cf. Peuquet, 2001), few commercid
geographic information sysems (GIS) or remote sensing (RS) software packages offer robust
gpatio-tempora data handling capabilities. These capabilities are necessary for andlyzing the
growing volume of gpdio-temporal data generated by remote sensing technologies and
geocomputational smulations. Consequently, many researchers dealing with spatio-tempora data
have opted to craft their own agorithms using development platforms outside the confines of
conventiond GIS and RS software (e.g. Mennis and Peuquet, 2003; Yuan 2001). These



dgorithms are often domain specific and hence not eesily reused.

Here, we present a generd data processng language for spatio-tempord data caled
multidimensional map algebra (MMA). MMA is an extensgon of conventiona map agebra
(Tomlin, 1990), an andyticd framework for ragter data handling implemented in many commercia
software packages. Like conventional map agebra, MMA consists of a set of data manipulation
functions that can be combined to form complex modds. MMA functions, however, operate not
only on data that are two-dimensiond in space but also on data that are: 1) one-dimengond intime,
2) both two-dimensiond in space and one-dimensond intime, 3) three-dimensond in space, and
4) both three-dimensond in space and one-dimensiond in time. As a proof of concept, these
functions are implemented in JAVA as an open source class library available for public download a
http://astro.temple.eduw/~jmennigmma.

2. Extending Conventional Map Algebra to Multiple Dimensions
Conventiona map agebra functions are typicaly grouped into three main categories: locd, focd,
and zond functions (DeMers, 2002; Tomlin, 1990). Locd and focd functions ingest one or more
data layers and produce an output datalayer. Locd functions compute the vaue of agrid cdl in the
output layer based on the vaue(s) of the andogous cedl postion in the input layer(s). Focd
functions compute the vaue of a cdl in the output layer based on the cdl vaues within a
neighborhood of the analogous cel position in the input layer(s). Zond functions compute the vaue
of agrid cdl in the output layer usng two layers as input, a value layer and a zone layer, and output
atable. For each zone in the zone layer, the function summearizes the vaues of the analogous cell
positions in the vaue layer. For each type of a function a variety of gatisticd and other types of
operators can be applied. A number of other map agebra can be considered global functions, dso
sometimes referred to as incremental functions. Globa functions generdly ingest one or more data
layers and output a data layer in which the vaue of each grid cdll is computed by iterating over the
entire grid as, for example, in the ‘least cost path’ function (Tomlin, 1990).

A number of extensons to map adgebra have been proposed for environmental andysis (Pullar,
2001, Wessding et d., 1996). Some of these efforts have addressed extending map agebra
specificdly for analyss of three-dimensiond data (Neteler, 2004; Scott, 1998). Likewise, research
in image processing has aso focused on specifying map dgebra like datigticd manipulations on
three-dimensiond data (Nikolaidis and Pitas, 2000).

In our own previous research, we have shown how conventiona map agebra can be extended to
handle data that are both two-dimensond in gpace and one-dimensond in time using a space-time
‘data cube gpproach (Mennis et d., 2005). In this approach, the time dimension is treated as
amply a third dimenson eguivdent to the spatid dimensons and the map agebra dgorithms
extended accordingly to what we caled ‘cubic map agebra functions. For example, whereas a
conventiona loca map agebra function may be conceptudized as the overlay of two registered
grids, a cubic locd function as applied to two data cubes may be conceptudized as the
uperpogtion of two cubes. MMA focd and zond functions differ from their conventiond map
agebraandogsin that neighborhoods and zones may be defined over space and/or time in addition
to the two-dimensond spatia neighborhoods and zones used in conventiona map algebra The
data cube data structure and a limited st of cubic map agebra functions were implemented as a



prototype in the image processing scripting language IDL (Research Systems, Inc.). The prototype
implementation was tested and validated in the context of case studies focusing on the anays's of
dimate-vegetation-land cover dynamics in Africa usng time series of satellite imagery (Mennis,
2005; Mennis and Viger, 2004).

Here, we extend the initiad prototype implementation subgtantialy. First, we have ported the code
from IDL to JAVA, an open source development platform, in order to facilitate code sharing and
development. Second, we have expanded the data structure and agorithms to handle not only
space-time data cubes but aso a variety of other temporal, spatia, and spatio-tempora data types.
Third, we have developed an object- oriented code design to maximize code reusability and facilitate
the continued development of the MMA JAVA library. Fourth, we have developed a standard
MMA function syntax which supports the development of new MMA functions.

3. Spatio-Temporal Data Types, Neighborhoods, and L ags

3.1 Data
MMA specifies the following data typesfor encoding tempord, spatia, and spatio-tempord data:

TimeSeries
Grid
TimeCube
SpaceCube
HyperCube

A TimeSeriesmaps a et of vauesto aset of regular tempora postions. A Grid (i.e. a
conventiond raster) maps a set of valuesto a set of regularly goaced planimetric positions. A
TimeCube maps a set of vauesto a set of regularly spaced planimetric and tempora postions. A
SpaceCube maps a st of vauesto a st of regularly spaced planimetric and dtitudind pogtions. A
HyperCube maps a st of valuesto a set of regularly spaced planimetric, dtitudinal, and tempora
postions. Anindividud TimeSeries Grid, TimeCube, SpaceCube, or HyperCube data set is
referred to asalayer. Anindividud podtion in any layer isreferred to as an element, and each
element is associated with asingle variable vaue.

Theletters X, Y, Z, and T are used in the conventional manner to refer to various spatid and
tempord dimendions. The X and Y dimensions of a Grid specify planimetric pogtion, where a [0,0]
origin is specified at the lower left corner of the grid and X refers to the east-west axisand Y refers
to the north-south axis. The Z dimension refers to the dtitudind axis, with the origin a the lowest
dtitude, and the T dimension refers to the tempord axis, with the origin & the earliest time. Thus,
for example, a Grid dement's postion can be specified as a [X,Y] coordinate value and a
Hyper Cube element’ s position can be specified asa[X,Y,Z,T] coordinate vaue.

Each data type is implemented as a JAVA class with afloat array of one or more dimensions as an
atribute of the class. Thus, each dement’s tempord, spatid, or spatio-tempora postionin alayer
is encoded as its pogtion in the multidimensond array, and the dement’s vaue is the val ue encoded
for that array postion. The TimeSeries data type is implemented as a one-dimensiond array [T],



the Grid as a two-dimensiond aray [X,Y], the TimeCube and SpaceCube as three dimensond
arrays [X,Y,T] and [X,Y,Z], respectively, and the HyperCube as a four dimensond aray
[X,Y,Z,T]. Thesedassesdso store information on spatia and tempord referencing and resolution,
aswedl as areserved value for indicating ‘no data’

3.2 File Reading and Writing

Data may be read into these data gructures through file reading and writing methods.  The file
reading method ingests a heeder file (named “1.hdr”) and one or more ASCII files (named “1.dat”).
The header file includes information on the data type (e.g. TimeCube), the number of X, Y, Z, and
T pogtions, the X, Y, Z, and T resolution, the vaue indicating ‘no data’ and the coordinate
reference pogtion of the X, Y, Z, and T dimensons. If a TimeSeries is being read, the data file
smply reports a vaue for each tempora pogtion on a sepaae linein thefile. If a Grid is being
reed, the data file is amatrix of vaues where each matrix pogtion indicates the position of the vaue
in the Grid. If a SpaceCube is being read, a set of data files is required where each file encodes
data for an individua Grid a one dtitudind pogtion. Similarly for a TimeCube, a s&t of datafilesis
required where each file encodes data for an individua grid at one tempord postion. For both
SpaceCubes and TimeCubes, the files must be named by number (e.g. “1.dat”, “2.dat”, ec.) in
numeric order from lowest dtitude to highest (for a SpaceCube) or earliest time to latest (for a
TimeCube). If a HyperCube is being read, the Grids for the first tempora position are numbered
from lowest to highest dtitude, then the Grids for the second tempord position are numbered from
lowest to highest dtitude, and so on. The file writer method can aso write files that can be directly
read by ArcGIS (Environmentd Systems Research Indtitute, Inc.) asan ESRI GRID.

3.3 Neighbor hoods

Other data types specified by MMA are used to define a neighborhood. A neighborhood indicates
the region consdered proxima to a given edement postion. Neghborhoods are used in
conventional map agebra foca functions, where they @n take the form of rectangle, circle, or
wedge shapes of various szes. MMA neighborhoods extend these two-dimensiona shapes to
multiple dimengons, induding the following data types, where the beginning of the data type
indicates its appropriate dimensondity:

TNeighborhood

XY Neighborhood
XY ZNeighborhood
XY TNeighborhood
XY ZTNeighborhood

A TNeghborhood is defined smply by a tempord range. XYNeighborhood is extended to
represent either arectangle or circle shape:

XY Rectangle
XYCirde

XY ZNeighborhood is extended to represent cubic and spherical neighborhoods:

XY ZRectangle



XYZCircle

XY TNeighborhood is extended to represent neighborhoods that may best be conceptualized as a
space-time cube and space-time cylinder, where the radius of the cylinder reflects a spatia radius
and the lengthr wise axis of the cylinder reflects atempord range:

XY TRectangle
XYTCirde

Of course, because the spatia and tempora dimensions do not use the same units of measurement
(i.e. meters and hours are not equivaernt), the user has the option of defining the neighborhood
extent independently for the spatiad and tempord dimensions.

XY ZTNeighborhood is extended to represent extensions of rectangle and circle shapes to four
dimensions, three spatid and one tempord:

XY ZTRectangle
XYZTCirde

In addition, users can define custom neighborhoods of irregular shapes in space and space-time.

3.4 Lags

A lag is an offset from an dement that certain MMA functions can utilize. For example, a focd
function may compute on a neighborhood that is not centered on the eement position for whose
vaueit is caculating but rather offsat a certain distance (or time) away. Lags may be specified for
each type of layer depending on whether an offset in time, space, or Space time is gppropriate:

TLag
XYLag
XYZLag
XYTLag
XYZTLag

4. Functions

Like conventiond map agebra, MMA functions can be categorized according to the locd, focd,
zond, or globa nature of the function. As noted above, each function (with the exception of global
functions) also ypicdly applies a mathematicd, relationd, or satidtica caculaion. The following
caculations are supported in the current implementation of MMA:

Mathematical Add, Subtract, Multiply, Divide
Comparative GreaterThan LessThan, EquaTo
Statigtica Minimum, Maximum, Mean, Median, Range, Variance

The functions are referred to by the category name followed by the type of cdculation, for example:



LocaAdd
Focd Maximum
ZonaMean

Each MMA function isimplemented asa JAVA class  Each function class contains a method cdled
‘execute’ that is caled to execute the function, and which is overloaded to handle different
combinations of layer types as inputs to the method and for user-defined function parameterization.

4.1 Local Functions
A locd function ingedts at least ore layer and outputs one layer. There are sverd types of input
parameter combinations.

One layer and a scalar value

For example, a Loca Add that ingests a spacecube and the vaue ‘5 would output a spacecube in
which each dement is equa to the sum of 5 + the vaue of the andogous eement in the input
spacecube.

Two layers of the same type
For example, a Locd Add that ingests two spacecubes would output a spacecube in which each
element isequal to the sum of the dements that share the same position in the two input layers.

A list of layersof the same type
For example, a LocalAdd that ingests a list of pacecubes would output a spacecubein which eech
element isequd to the sum of the eements that share the same pogtion in dl the input spacecubes.

One layer and another layer of fewer dimensions

For example, a LocdAdd that ingests a spacecube and a grid would output a grid in which each
element is equa to the sum of the dements that share the same podtion in the two input layers.
Note that for each element in the grid there will be many dements in the spacecube that share its
position, as for every planimetric coordinate the spacecube will contain many dtitudind postions.
This function is restricted to cases where the second input layer (e.g. a grid in the example given
here) has a subset of the dimensions of the first input layer (e.g. a pacecube).

Within the loca function category there is adso another category called rollup furctions. These
functions transform an input layer into another layer type with fewer dimensons usng a mathematica
summarization For example, a LocaRollUpZMean that ingests a spacecube would output a grid
by taking the mean of dl dementsin the Z dimenson for each [X,Y] dement postion.

Thebasic syntax for locd functionsis:

outlayer = localFunction.execute(inlayerl, inlayer2)

where ‘outlayer’ is the name of the layer generated by the function, ‘localFunction’ is the name of
the locd function, ‘execute is the name of the method called to invoke the function, ‘inlayerl’ isthe

name of the firg input layer, and ‘inlayer2’ is the name of the second input layer. Other method
signatures are made to operate on lists of two or more layers, to lagone layer by another in the X,



Y, Z, and/or T dimensions, and to combine layers of different types.

4.2 Focal Functions

A focd function ingests at least one layer and one neighborhood and outputs one layer of the same
type as the input layer. For example, a FocaAdd that ingests a spacecube and a cubic
neighborhood would output a spacecube in which each dement is assigned the sum of the eement
vaues located within the cubic neighborhood of each dement. Foca functions can dso ingest alag
to offsat the neighborhood during the foca iteration. It is dso possble to pass a lig of
neighborhoods and/or alig of lagsinto afoca function. If alist of neighborhoods (lags) is used, the
foca function will utilize a separate neighborhood (lag) for each dement’s focd cdculation.

Thebasc syntax for focd functionsis
outlayer = foca Function.execute(inlayer, neighborhood, |ag)

where ‘outlayer’ is the name of the layer generated by the function, ‘focaFunction’ is the name of
the focd function, ‘execute’ is the name of the method called to invoke the function, ‘inlayer’ isthe
name of the input layer, ‘neighborhood’ is the user-specified focd neighborhood, and ‘lag’ is the
user- specified lag.

4.3 Zonal Functions

A zond function ingests azone layer and a value layer and outputs a table. For example, a
Zond Add that ingests a zone spacecube and a vaue spacecube will output a table in which each
record represents one zone and for each zone is caculated the sum of al the value spacecube's
elements contained within thet zone. The zone layer must be either the same type as the vadue layer,
or atype with asubset of the dimensions of the value layer. For example, aZonad Add that ingestsa
zone grid and a vaue spacecube will output a table in which each record represents a grid zone and
for each zone is cdculated the sum of dl the vaue spacecube s dements contained within that zone.
Note that in this case, there will be multiple spacecube dements associated with each grid e ment,
as there will be many dtitudind postions in the spacecube associated with each planimetric position
inthegrid.

Thebasic syntax for zond functionsis:
outtable = zonal Function.execute(inzone ayer, invaluel ayer)

where ‘outtabl€ is the name of the table generated by the function, ‘ zonaFunction’ is the name of
the zond function, ‘execute’ is the name of the method cdled to invoke the function, ‘inzondlayer’ is
the name of the zone layer, and ‘invdudayer’ is the name of the vaue layer. Like MMA bca
functions, zond functions can aso combine layers of different types, provided that the dimensions of
the zone layer type are a subset of the dimensions of the vaue layer type (eg. a timeseries zone
layer and atimecube vaue layer).

5. Discussion and Conclusion
We have presented the design and implementation for extending conventiond map agebra to



multiple dimensions for spatio-tempora data handling. Like conventiond map agebra, individua
MMA functions can be combined in a series to form more complex modds, where the output of
one function isingested into another function, whose output isingested into another function, and so
on. MMA can thus be consdered a powerful modding language that can applied to variety of
gpplication domains where the analysis of tempora, spatia, and spatio-tempora datais important.

The design of MMA, where each function is defined as a separate JAVA class and eech classhas a
method ‘execute’ that is overloaded to handle many different combinations of inputs, fecilitates
continued development and code sharing. We initidly considered a design in which the functions
were methods contained within the spatio-temporal data types classes. For example, the
SpaceCube class would have had a LocalAdd function encoded as a method within the class.

While this approach is perhaps more in kegping with the principles of object oriented design, it hes
some serious drawbacks. Firdt, it is in contrasgt to the syntax of the conventional map agebra, a
gyntax with which nany GIS users are familiar. Second, and more practicdly, in such a design
every additiond MMA function thet is implemented would demand thet the entire MMA library for
that data type be recompiled Third, such a design would demand that users interested in only a
handful of MMA functions acquire the entire MMA library (et leest for a given spatio-tempora data

type).

For these reasons, we decided to implement each function as a separate class. In addition, such an
implementation Strategy provides a component-based design where users can acquire only the
functions that are germane to their andysis and combine them however they like. New MMA
functions may be developed and added to the library independent of the methods contained in any
spatio-tempora datatype.

We dso note that MMA can be considered a spatio-tempora geoprocessing specification. There
has been much recent activity on developing specifications for interoperability for spatid data by
organizations such as the Open Geospatid Consortium (OGC), but specifications for data
manipulation and/or andysis are for the most part ill under development. By providing a formd
language for spatio-temporal data processing of raster data, MMA can be consdered a
pecification where a st of basic functions are defined and for each function both the inputs and
outputs are specified. The function signatures (i.e. for the execute methods) can be considered the
interface to the functions as they are, in fact, independent of the actud MMA data structures and
agorithms. Thus, if two software packages were to share in a spatiotemporal anays's, one package
would be able to ‘borrow’ geoprocessing tasks from the other if they could agree on the conceptua
basis of the function and the data objects passad into and out of the individua geoprocessing
functions, regardless of each package' s actuad function and data Structure implementation.

The primary chalenge facing the continued development of MMA concerns performance issues.
Even two-dimensond raster data can be very large; three and four dimensiona data can quickly
overwhem many desktop computing platforms even when using data with only a few time steps or
dtitudind pogdtions. Large data volumes are problematic in two ways. Firg, the volume of data can
amply exceed the memory capacity of the hardware, whether in smply holding a sngle data st in
memory or during function processing, where there is often the need to store multiple
multidimensona arrays of the same Sze as the data sat under andysis Smultaneoudy. Second, even
when there is enough memory to hold the data set and complete the cdculation, the efficiency of



many functionsis very poor. Consider that many functions operate by iterating over every eement
in a data set to paform some kind of daa retrievd and cdculation. With three and four-
dimensond data, the number of eements can be quite large and the sheer number of data retrieva
operations can be time- consuming.

These performance issues will be addressed in future research. Advances in two-dimensond
spatid data storage and retrieva may be extended to multiple dimensions to improve MMA storage
and dgorithmic efficiency. In addition, we will continue to develop new MMA functions,
paticularly those that extend the statistical capabilities for locdl, foca, and zond functions beyond
the basic arithmetic and relationa operators now offered. We aso intend to extend certain terrain
operators, such asleast cost path, flow direction, and dope, to multiple dmensons.
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