Encapsulation

Data and the methods working on them are contained in Objects. You don’t need to know how something is done, just what does it. Indeed, you shouldn’t be able to find out how stuff is done – it might be secret. Encapsulation allows programmers to bolt together Objects made by other people without having to understand their details.
How does Java do it?
1) Classes and Objects encapsulate the data and the methods working on them.

2) Methods can be called without knowing the details of how they do their job.

3) Access control.

Access control

In the absence of an access control in the method or variable declaration the code can only be seen in the same package (remember that a package is a collection of Classes). The other possible declarations are…

protected: can only be seen outside the same package by subclasses of the Class it’s in. Can be seen by everything in the same package as itself.

private: only be seen in the Class it’s in.

public: can be seen anywhere.

static: an additional control which sets variables and methods so they can be used without creating an Object. Static variables only have one copy, which can be accessed in all the Objects, i.e., change it in one Object and it changes in all the others. Called using the Class name then a dot, e.g.,

Math.sqrt() or, System.out
Polymorphism

You can appear to have one method that does many things. E.g., Math.sqrt() takes in both ints and doubles. Polymorphism means people don’t need to remember twenty different methods.
How does Java do it?
1) Overloading.

2) Overriding.

Overloading

If methods have the same name, the one that’s used is based on the arguments the method takes. If a suitable method isn’t available, the JVM will try and make an invisible cast.

For example, there’s a Math.sqrt for ints, floats and doubles, but you don’t have to tell the computer which one to use – it decides on the basis of what it’s passed.

Overriding

If a Subclass has the same method name as its Superclass but it takes different arguments in, the method is simply overloaded. If the method has the same arguments the Subclass method will be used. It’s possible the call the Superclass method using ‘super.’, in much the same way as ‘this.’ is used to call variables and methods in a Class outside of a block.

Inheritance

Classes can ‘inherit’ the methods and attributes of another Class, saving you re-implementing stuff. It also allows you to develop hierarchies – if you need a simple version of something, you can use one, and you can also develop more complex versions.
Imagine that you’re writing a program that gets information across a network, but you don’t know what kind of Object the data is going to arrive in across the network. You can tell programmers that it must have several characteristics, which define a ‘parent’ class. It’s then up to whoever sends you the data to make sure the Object they send inherits all these characteristics, but they can add their own as well.
How does Java do it?
1) Extends.

2) Abstract Classes.

3) Interfaces.

Extends

A Subclass extends a Superclass. The Subclass includes all the public methods and variables of the Superclass. To set the private code in the Superclass you need to call the Superclass constructor. This should be the first thing you do in the Subclass constructor, for example…

class Land extends Point {

Land {

super(23,42,-10,”Bob’s house”);

}

}

If we declare methods as final they can’t be overridden. Classes declared as final can’t be inherited, for example

final class Land { }

Abstract Classes

Used for creating a Class that has bits that need filling within inheriting Classes. These
Classes can only be inherited, you can’t make Objects from them directly. They can include some non-abstract methods and variables. Any Class that extends them must provide all the missing methods, or be declared abstract itself.

Why do this? Well, for example, a Class to draw a fancy button will have methods for drawing on the screen. It’s not necessary for other programmers to see them. However, you might want to insist users implement methods for what happens when it’s pushed if they use it.
Here’s an example of an abstract Class.

abstract class Point {

void nonAbstractMethod () {

System.out.println(“Method not abstract”);

}

abstract void abstractMethod () ;

}
If a method is not declared abstract it doesn’t need to be implemented by the Subclass, it can be called directly from the Superclass as with any normal Subclass.

Interfaces

Interfaces are the ultimate abstract Class. They’re lists of methods that must be defined in Classes that implement them. All variables in them are final (i.e. constants).

Why do this? You can make Classes that rely on finding certain methods wherever they’re used. By forcing people to implement these methods you can guarantee they exist.
For example, if you use a button in your Class, you must implement the ‘ActionListener’ interface, and make an ‘actionPerformed’ method which the button will call when it’s pushed. Here’s an example of the use of an interface.

public interface Point {

final static int ORIGIN_X = 0;

final static int ORIGIN_Y = 0;

public int xDistanceToOrigin (int x) ;

}

public class Land implements Point {

public int xDistanceToOrigin (int presentX) {

return presentX - ORIGIN_X;

}

}
public interface GenericRequest {

public final static String STANDARDS_AGENCY =

"LOLCATS Banking Standards Agency";

public String getPin();

}

public class BlueBankATM{

private BlueBankATM(String args[]) {

BlueBankRequest b1 = new BlueBankRequest();

b1.setPin(args[0]);

RedBankConnection redBankConnection =

RedBank.getRedBankConnection();

boolean pinOk = redBankConnection.isPinOk(b1);

if (pinOk) {

System.out.println
("Here your monies! Haz a cheezburger!");

} else {

System.out.println("You haz a sad. Yes you do.");

}

}

public static void main (String args[]) {

new BlueBankATM(args);

}

 }

class BlueBankRequest implements GenericRequest {

private String pin = "";

public void setPin(String pinIn) {

pin = pinIn;

}

public String getPin() {

return pin;

}

}

public class RedBankConnection {

private String[] pins = {"8005","0110","1001","9010"};

public boolean isPinOk (GenericRequest gr) {

String pin = gr.getPin();

boolean found = false;

for (String text: pins) {

if (text.equals(pin)) {

found = true;

break;

}

}

System.out.println
("Pin checked using standards developed by " +

GenericRequest.STANDARDS_AGENCY + ".");

if (found) {

return true;

} else {

return false;

}

}

}

public class RedBank {

private RedBank() {};

public static RedBankConnection getRedBankConnection() {

return new RedBankConnection();

}

}

